

Reverse Breakup Fees and Antitrust Approval

Albert H. Choi and Abraham L. Wickelgren

June 2019

- Reverse breakup fees common in mergers

- Reverse breakup fees common in mergers
 - Acquirer pays to the target if the merger rejected

- Reverse breakup fees common in mergers
 - Acquirer pays to the target if the merger rejected
 - Many high profile examples

- Reverse breakup fees common in mergers
 - Acquirer pays to the target if the merger rejected
 - Many high profile examples
 - AT&T paid \$4 billion to T-Mobile

- Reverse breakup fees common in mergers
 - Acquirer pays to the target if the merger rejected
 - Many high profile examples
 - AT&T paid \$4 billion to T-Mobile
 - Fox rejected Comcast's higher offer, accepted Disney's with \$2.5 billion breakup fee

- Reverse breakup fees common in mergers
 - Acquirer pays to the target if the merger rejected
 - Many high profile examples
 - AT&T paid \$4 billion to T-Mobile
 - Fox rejected Comcast's higher offer, accepted Disney's with \$2.5 billion breakup fee
 - **Antitrust breakup fees in 12% of deals (24% challenged)**

- Reverse breakup fees common in mergers
 - Acquirer pays to the target if the merger rejected
 - Many high profile examples
 - AT&T paid \$4 billion to T-Mobile
 - Fox rejected Comcast's higher offer, accepted Disney's with \$2.5 billion breakup fee
 - Antitrust breakup fees in 12% of deals (24% challenged)
- Possible effects of breakup fees

- Reverse breakup fees common in mergers
 - Acquirer pays to the target if the merger rejected
 - Many high profile examples
 - AT&T paid \$4 billion to T-Mobile
 - Fox rejected Comcast's higher offer, accepted Disney's with \$2.5 billion breakup fee
 - Antitrust breakup fees in 12% of deals (24% challenged)
- Possible effects of breakup fees
 - Signal to both target and competition authority

- Reverse breakup fees common in mergers
 - Acquirer pays to the target if the merger rejected
 - Many high profile examples
 - AT&T paid \$4 billion to T-Mobile
 - Fox rejected Comcast's higher offer, accepted Disney's with \$2.5 billion breakup fee
 - Antitrust breakup fees in 12% of deals (24% challenged)
- Possible effects of breakup fees
 - Signal to both target and competition authority
 - Raises the stakes, affecting litigation behavior

- Reverse breakup fees common in mergers
 - Acquirer pays to the target if the merger rejected
 - Many high profile examples
 - AT&T paid \$4 billion to T-Mobile
 - Fox rejected Comcast's higher offer, accepted Disney's with \$2.5 billion breakup fee
 - Antitrust breakup fees in 12% of deals (24% challenged)
- Possible effects of breakup fees
 - Signal to both target and competition authority
 - Raises the stakes, affecting litigation behavior
 - Our signaling model w/ endogenous litigation spending captures these features to suggest if there is any rational for regulating breakup fees

Preview of Results

- Main results

- Main results
 - Best case—Fixed litigation spending, asymmetric information

- Main results
 - Best case—Fixed litigation spending, asymmetric information
 - Worst case—Full information, endogenous litigation spending

- Main results
 - Best case—Fixed litigation spending, asymmetric information
 - Worst case—Full information, endogenous litigation spending
 - **Asymmetric information & endogenous litigation spending:**

- Main results
 - Best case—Fixed litigation spending, asymmetric information
 - Worst case—Full information, endogenous litigation spending
 - Asymmetric information & endogenous litigation spending:
 - Supra-compensatory breakup fees could be socially desirable

- Main results
 - Best case—Fixed litigation spending, asymmetric information
 - Worst case—Full information, endogenous litigation spending
 - Asymmetric information & endogenous litigation spending:
 - Supra-compensatory breakup fees could be socially desirable
 - Even if they are, equilibrium breakup fees exceed the social optimum

Related literature

- Several papers on breakup fees paid by target

Related literature

- Several papers on breakup fees paid by target
 - Mostly empirical: Bates and Lemmon (2003), Officer (2003), Boone and Mulherin (2007)

Related literature

- Several papers on breakup fees paid by target
 - Mostly empirical: Bates and Lemmon (2003), Officer (2003), Boone and Mulherin (2007)
 - Not related to regulatory approval: **Che and Lewis (2007)** bidder participation model

- Several papers on breakup fees paid by target
 - Mostly empirical: Bates and Lemmon (2003), Officer (2003), Boone and Mulherin (2007)
 - Not related to regulatory approval: Che and Lewis (2007) bidder participation model
- Reverse breakup fees papers

- Several papers on breakup fees paid by target
 - Mostly empirical: Bates and Lemmon (2003), Officer (2003), Boone and Mulherin (2007)
 - Not related to regulatory approval: Che and Lewis (2007) bidder participation model
- Reverse breakup fees papers
 - No game-theoretic analysis that we know of

- Several papers on breakup fees paid by target
 - Mostly empirical: Bates and Lemmon (2003), Officer (2003), Boone and Mulherin (2007)
 - Not related to regulatory approval: Che and Lewis (2007) bidder participation model
- Reverse breakup fees papers
 - No game-theoretic analysis that we know of
 - **Mostly about risk allocation and investment incentives: Afrasharipour (2010), Quinn (2010), Choi and Triantis (2010), Mahmudi, Virandi, and Zhao (2015), Coates, Palia, and Wu (2018)**

- 3 players: Acquirer (A), Target (T), Regulator (R)

- 3 players: Acquirer (A), Target (T), Regulator (R)
- **Timeline**

- 3 players: Acquirer (A), Target (T), Regulator (R)
- Timeline
 - Period 0 : A learns type, $t \in \{ac, pc\}$; ac -type occurs with probability q

- 3 players: Acquirer (A), Target (T), Regulator (R)
- Timeline
 - Period 0 : A learns type, $t \in \{ac, pc\}$; ac -type occurs with probability q
 - Period 1: A makes take it or leave it offer $\{p, b\}$ to T

- 3 players: Acquirer (A), Target (T), Regulator (R)
- Timeline
 - Period 0 : A learns type, $t \in \{ac, pc\}$; ac -type occurs with probability q
 - Period 1: A makes take it or leave it offer $\{p, b\}$ to T
 - Period 2: R observes contract & costless signal, $s \in \{s_h, s_l\}$, of whether the merger is ac or not

- 3 players: Acquirer (A), Target (T), Regulator (R)
- Timeline
 - Period 0 : A learns type, $t \in \{ac, pc\}$; ac -type occurs with probability q
 - Period 1: A makes take it or leave it offer $\{p, b\}$ to T
 - Period 2: R observes contract & costless signal, $s \in \{s_h, s_l\}$, of whether the merger is ac or not
 - Probability $s = s_h$ if $t = i$ is h_i

- 3 players: Acquirer (A), Target (T), Regulator (R)
- Timeline
 - Period 0 : A learns type, $t \in \{ac, pc\}$; ac -type occurs with probability q
 - Period 1: A makes take it or leave it offer $\{p, b\}$ to T
 - Period 2: R observes contract & costless signal, $s \in \{s_h, s_l\}$, of whether the merger is ac or not
 - Probability $s = s_h$ if $t = i$ is h_i
 - $0 < h_{pc} < h_{ac} < 1$: signal is informative but imperfect

- 3 players: Acquirer (A), Target (T), Regulator (R)
- Timeline
 - Period 0 : A learns type, $t \in \{ac, pc\}$; ac -type occurs with probability q
 - Period 1: A makes take it or leave it offer $\{p, b\}$ to T
 - Period 2: R observes contract & costless signal, $s \in \{s_h, s_l\}$, of whether the merger is ac or not
 - Probability $s = s_h$ if $t = i$ is h_i
 - $0 < h_{pc} < h_{ac} < 1$: signal is informative but imperfect
 - Period 3: If R challenges, A & R litigate; court blocks or allows

- 3 players: Acquirer (A), Target (T), Regulator (R)
- Timeline
 - Period 0 : A learns type, $t \in \{ac, pc\}$; ac -type occurs with probability q
 - Period 1: A makes take it or leave it offer $\{p, b\}$ to T
 - Period 2: R observes contract & costless signal, $s \in \{s_h, s_l\}$, of whether the merger is ac or not
 - Probability $s = s_h$ if $t = i$ is h_i
 - $0 < h_{pc} < h_{ac} < 1$: signal is informative but imperfect
 - Period 3: If R challenges, A & R litigate; court blocks or allows
 - R & pcA spending fixed (ϕ and ψ_{pc}); acA spending (ψ_{ac}) endogenous

- 3 players: Acquirer (A), Target (T), Regulator (R)
- Timeline
 - Period 0 : A learns type, $t \in \{ac, pc\}$; ac -type occurs with probability q
 - Period 1: A makes take it or leave it offer $\{p, b\}$ to T
 - Period 2: R observes contract & costless signal, $s \in \{s_h, s_l\}$, of whether the merger is ac or not
 - Probability $s = s_h$ if $t = i$ is h_i
 - $0 < h_{pc} < h_{ac} < 1$: signal is informative but imperfect
 - Period 3: If R challenges, A & R litigate; court blocks or allows
 - R & pcA spending fixed (ϕ and ψ_{pc}); acA spending (ψ_{ac}) endogenous
 - R never wins against pcA ; R wins against acA with probability $\pi(\psi_{ac})$; $\pi' < 0$, $\pi'' > 0$.

Model–Payoffs

- Offer rejected

Model–Payoffs

- Offer rejected
 - T gets v ; A gets 0; R gets 0

- Offer rejected
 - T gets v ; A gets 0; R gets 0
- Offer accepted

- Offer rejected
 - T gets v ; A gets 0; R gets 0
- Offer accepted
 - No challenge: T gets p , A gets $u_i - p$, R gets B or $-L$

- Offer rejected
 - T gets v ; A gets 0; R gets 0
- Offer accepted
 - No challenge: T gets p , A gets $u_i - p$, R gets B or $-L$
 - Approved: T gets p , A gets $u_i - p - \psi_i$, R gets $B - \phi - z\psi_{pc}$ or $-L - \phi - z\psi_{ac}$

- Offer rejected
 - T gets v ; A gets 0; R gets 0
- Offer accepted
 - No challenge: T gets p , A gets $u_i - p$, R gets B or $-L$
 - Approved: T gets p , A gets $u_i - p - \psi_i$, R gets $B - \phi - z\psi_{pc}$ or $-L - \phi - z\psi_{ac}$
 - Rejected: T gets $v + b$, A gets $-b - \psi_{ac}$, R gets $-\phi - z\psi_{ac}$

Litigation Stage

- *A's litigation strategy*

Litigation Stage

- A 's litigation strategy
 - pcA spends ψ_{pc} and wins

Litigation Stage

- A 's litigation strategy
 - pcA spends ψ_{pc} and wins
 - acA chooses ψ_{ac} to maximize
$$(1 - \pi(\psi_{ac})) (u_{ac} - p) - \pi(\psi_{ac}) b - \psi_{ac}$$

Litigation Stage

- A 's litigation strategy

- pcA spends ψ_{pc} and wins
- acA chooses ψ_{ac} to maximize
$$(1 - \pi(\psi_{ac})) (u_{ac} - p) - \pi(\psi_{ac}) b - \psi_{ac}$$
- FOC: $-(\psi_{ac}) (u_{ac} + b - p) = 1$ implicitly defines $\psi_{ac}^*(b, p)$

Litigation Stage

- A 's litigation strategy
 - pcA spends ψ_{pc} and wins
 - acA chooses ψ_{ac} to maximize
$$(1 - \pi(\psi_{ac})) (u_{ac} - p) - \pi(\psi_{ac}) b - \psi_{ac}$$
 - FOC: $-(\psi_{ac}) (u_{ac} + b - p) = 1$ implicitly defines $\psi_{ac}^*(b, p)$
- R challenge decision

Litigation Stage

- A 's litigation strategy
 - pcA spends ψ_{pc} and wins
 - acA chooses ψ_{ac} to maximize
$$(1 - \pi(\psi_{ac})) (u_{ac} - p) - \pi(\psi_{ac}) b - \psi_{ac}$$
 - FOC: $-(\psi_{ac}) (u_{ac} + b - p) = 1$ implicitly defines $\psi_{ac}^*(b, p)$
- R challenge decision
 - Define q_R as R 's posterior belief that merger is anti-competitive

Litigation Stage

- A 's litigation strategy

- pcA spends ψ_{pc} and wins
- acA chooses ψ_{ac} to maximize
$$(1 - \pi(\psi_{ac})) (u_{ac} - p) - \pi(\psi_{ac}) b - \psi_{ac}$$
- FOC: $-(\psi_{ac})(u_{ac} + b - p) = 1$ implicitly defines $\psi_{ac}^*(b, p)$

- R challenge decision

- Define q_R as R 's posterior belief that merger is anti-competitive
- **Challenge if and only if:**

$$q_R(\pi(\psi_{ac}^*(b, p))L - z\psi_{ac}^*(b, p)) - (1 - q_R)z\psi_{pc} - \phi \geq 0$$

Benchmark 1: Fixed Litigation Costs

- Fix $\psi_{ac} \geq \psi_{pc}$: b doesn't affect it

Benchmark 1: Fixed Litigation Costs

- Fix $\psi_{ac} \geq \psi_{pc}$: b doesn't affect it
- R makes inferences about A 's type (but not litigation effort) from b

Benchmark 1: Fixed Litigation Costs

- Fix $\psi_{ac} \geq \psi_{pc}$: b doesn't affect it
- R makes inferences about A 's type (but not litigation effort) from b
- Assume in pooling eqm, R challenges iff $s = s_h$

Benchmark 1: Fixed Litigation Costs

- Fix $\psi_{ac} \geq \psi_{pc}$: b doesn't affect it
- R makes inferences about A 's type (but not litigation effort) from b
- Assume in pooling eqm, R challenges iff $s = s_h$
- $\pi(\psi_{ac}) > 0$ implies acA more likely to pay b than pcA

Benchmark 1: Fixed Litigation Costs

- Fix $\psi_{ac} \geq \psi_{pc}$: b doesn't affect it
- R makes inferences about A 's type (but not litigation effort) from b
- Assume in pooling eqm, R challenges iff $s = s_h$
- $\pi(\psi_{ac}) > 0$ implies acA more likely to pay b than pcA
- **Pooling equilibrium for small b**

Benchmark 1: Fixed Litigation Costs

- Fix $\psi_{ac} \geq \psi_{pc}$: b doesn't affect it
- R makes inferences about A 's type (but not litigation effort) from b
- Assume in pooling eqm, R challenges iff $s = s_h$
- $\pi(\psi_{ac}) > 0$ implies acA more likely to pay b than pcA
- Pooling equilibrium for small b
 - Larger b worse for acA than for pcA , but

Benchmark 1: Fixed Litigation Costs

- Fix $\psi_{ac} \geq \psi_{pc}$: b doesn't affect it
- R makes inferences about A 's type (but not litigation effort) from b
- Assume in pooling eqm, R challenges iff $s = s_h$
- $\pi(\psi_{ac}) > 0$ implies acA more likely to pay b than pcA
- Pooling equilibrium for small b
 - Larger b worse for acA than for pcA , but
 - Revealing ac type implies offer $(0, v)$ and always challenged, instead of challenged with probability h_{ac}

Benchmark 1: Fixed Litigation Costs

- Fix $\psi_{ac} \geq \psi_{pc}$: b doesn't affect it
- R makes inferences about A 's type (but not litigation effort) from b
- Assume in pooling eqm, R challenges iff $s = s_h$
- $\pi(\psi_{ac}) > 0$ implies acA more likely to pay b than pcA
- Pooling equilibrium for small b
 - Larger b worse for acA than for pcA , but
 - Revealing ac type implies offer $(0, v)$ and always challenged, instead of challenged with probability h_{ac}
 - $(1 - h_{ac}\pi_{ac}(\psi_{ac}))(u_{ac} - p) - h_{ac}\pi_{ac}(\psi_{ac})b - h_{ac}\psi_{ac} \geq (1 - \pi(\psi_{ac}))(u_{ac} - v) - \psi_{ac}$ if b small enough

Benchmark 1: Fixed Litigation Costs

- Partial pooling for large b

Benchmark 1: Fixed Litigation Costs

- Partial pooling for large b
 - If b large & R challenges w/ s_h : acA separates rather than risk large breakup fee

Benchmark 1: Fixed Litigation Costs

- Partial pooling for large b
 - If b large & R challenges w/ s_h : acA separates rather than risk large breakup fee
 - Complete separation impossible: R won't challenge if only pcA offers high b contract

Benchmark 1: Fixed Litigation Costs

- Partial pooling for large b
 - If b large & R challenges w/ s_h : acA separates rather than risk large breakup fee
 - Complete separation impossible: R won't challenge if only pcA offers high b contract
 - acA mixes between high b contract and revealing contract

Benchmark 1: Fixed Litigation Costs

- Partial pooling for large b
 - If b large & R challenges w/ s_h : acA separates rather than risk large breakup fee
 - Complete separation impossible: R won't challenge if only pcA offers high b contract
 - acA mixes between high b contract and revealing contract
 - **R mixes with high b contract & s_h ; probability of challenge decreasing in b**

Benchmark 1: Fixed Litigation Costs

- Partial pooling for large b
 - If b large & R challenges w/ s_h : acA separates rather than risk large breakup fee
 - Complete separation impossible: R won't challenge if only pcA offers high b contract
 - acA mixes between high b contract and revealing contract
 - R mixes with high b contract & s_h ; probability of challenge decreasing in b
- Partial pooling raises R welfare

Benchmark 1: Fixed Litigation Costs

- Partial pooling for large b
 - If b large & R challenges w/ s_h : acA separates rather than risk large breakup fee
 - Complete separation impossible: R won't challenge if only pcA offers high b contract
 - acA mixes between high b contract and revealing contract
 - R mixes with high b contract & s_h ; probability of challenge decreasing in b
- Partial pooling raises R welfare
 - R welfare equivalent to challenging all mergers with high signal and some acA with low signal

Benchmark 1: Fixed Litigation Costs

- Partial pooling for large b
 - If b large & R challenges w/ s_h : acA separates rather than risk large breakup fee
 - Complete separation impossible: R won't challenge if only pcA offers high b contract
 - acA mixes between high b contract and revealing contract
 - R mixes with high b contract & s_h ; probability of challenge decreasing in b
- Partial pooling raises R welfare
 - R welfare equivalent to challenging all mergers with high signal and some acA with low signal
 - **Pooling equilibrium only has challenges from all mergers with high signal**

Benchmark 2: Complete Information

- R behavior

Benchmark 2: Complete Information

- R behavior
 - Never challenge pcA

Benchmark 2: Complete Information

- R behavior
 - Never challenge pcA
 - Challenge acA iff $\pi(\psi_{ac}^*(b, p)) \geq (z\psi_{ac}^*(b, p) + \phi)/L$

Benchmark 2: Complete Information

- R behavior

- Never challenge pcA
- Challenge acA iff $\pi(\psi_{ac}^*(b, p)) \geq (z\psi_{ac}^*(b, p) + \phi)/L$
 - $\psi_{ac}^*(b, p)$ is increasing in b , so

Benchmark 2: Complete Information

- R behavior

- Never challenge pcA
- Challenge acA iff $\pi(\psi_{ac}^*(b, p)) \geq (z\psi_{ac}^*(b, p) + \phi)/L$
 - $\psi_{ac}^*(b, p)$ is increasing in b , so
 - π is decreasing in b

- R behavior

- Never challenge pcA
- Challenge acA iff $\pi(\psi_{ac}^*(b, p)) \geq (z\psi_{ac}^*(b, p) + \phi)/L$
 - $\psi_{ac}^*(b, p)$ is increasing in b , so
 - π is decreasing in b
 - **There might exist a b^{**} such that**
 $\pi(\psi_{ac}^*(b^{**}, p)) = (z\psi_{ac}^*(b^{**}, p) + \phi)/L$

- R behavior
 - Never challenge pcA
 - Challenge acA iff $\pi(\psi_{ac}^*(b, p)) \geq (z\psi_{ac}^*(b, p) + \phi)/L$
 - $\psi_{ac}^*(b, p)$ is increasing in b , so
 - π is decreasing in b
 - There might exist a b^{**} such that $\pi(\psi_{ac}^*(b^{**}, p)) = (z\psi_{ac}^*(b^{**}, p) + \phi)/L$
- Optimal merger contracts

Benchmark 2: Complete Information

- R behavior
 - Never challenge pcA
 - Challenge acA iff $\pi(\psi_{ac}^*(b, p)) \geq (z\psi_{ac}^*(b, p) + \phi)/L$
 - $\psi_{ac}^*(b, p)$ is increasing in b , so
 - π is decreasing in b
 - There might exist a b^{**} such that $\pi(\psi_{ac}^*(b^{**}, p)) = (z\psi_{ac}^*(b^{**}, p) + \phi)/L$
- Optimal merger contracts
 - pcA indifferent because never challenged

- R behavior
 - Never challenge pcA
 - Challenge acA iff $\pi(\psi_{ac}^*(b, p)) \geq (z\psi_{ac}^*(b, p) + \phi)/L$
 - $\psi_{ac}^*(b, p)$ is increasing in b , so
 - π is decreasing in b
 - There might exist a b^{**} such that $\pi(\psi_{ac}^*(b^{**}, p)) = (z\psi_{ac}^*(b^{**}, p) + \phi)/L$
- Optimal merger contracts
 - pcA indifferent because never challenged
 - acA offers $b > b^{**}$ if possible and is never challenged, otherwise

Benchmark 2: Complete Information

- R behavior
 - Never challenge pcA
 - Challenge acA iff $\pi(\psi_{ac}^*(b, p)) \geq (z\psi_{ac}^*(b, p) + \phi)/L$
 - $\psi_{ac}^*(b, p)$ is increasing in b , so
 - π is decreasing in b
 - There might exist a b^{**} such that $\pi(\psi_{ac}^*(b^{**}, p)) = (z\psi_{ac}^*(b^{**}, p) + \phi)/L$
- Optimal merger contracts
 - pcA indifferent because never challenged
 - acA offers $b > b^{**}$ if possible and is never challenged, otherwise
 - acA offers $(0, v)$

- Informational effects of breakup fees are desirable

- Informational effects of breakup fees are desirable
 - They can help identify anti-competitive mergers

- Informational effects of breakup fees are desirable
 - They can help identify anti-competitive mergers
 - **Not perfect, but better than with small or no breakup fees**

- Informational effects of breakup fees are desirable
 - They can help identify anti-competitive mergers
 - Not perfect, but better than with small or no breakup fees
- **Litigation effects are undesirable**

- Informational effects of breakup fees are desirable
 - They can help identify anti-competitive mergers
 - Not perfect, but better than with small or no breakup fees
- Litigation effects are undesirable
 - Raising the cost of losing a challenge commits acquirer to fight harder

- Informational effects of breakup fees are desirable
 - They can help identify anti-competitive mergers
 - Not perfect, but better than with small or no breakup fees
- Litigation effects are undesirable
 - Raising the cost of losing a challenge commits acquirer to fight harder
 - Makes it harder to block anti-competitive mergers

- Informational effects of breakup fees are desirable
 - They can help identify anti-competitive mergers
 - Not perfect, but better than with small or no breakup fees
- Litigation effects are undesirable
 - Raising the cost of losing a challenge commits acquirer to fight harder
 - Makes it harder to block anti-competitive mergers
- What happens if both effects are present?

Full Model Equilibria

- Assumption: If pooling at $b = 0, R$ challenges if and only if $s = s_h$

Full Model Equilibria

- Assumption: If pooling at $b = 0, R$ challenges if and only if $s = s_h$
- Pooling equilibrium with no challenges

Full Model Equilibria

- Assumption: If pooling at $b = 0, R$ challenges if and only if $s = s_h$
- Pooling equilibrium with no challenges
 - R indifferent to challenging: $q_R^* = \frac{z\psi_{pc} + \phi}{\pi_{ac}(\psi_{ac}^*)L - z(\psi_{ac}^* - \psi_{pc})}$

Full Model Equilibria

- Assumption: If pooling at $b = 0, R$ challenges if and only if $s = s_h$
- Pooling equilibrium with no challenges
 - R indifferent to challenging: $q_R^* = \frac{z\psi_{pc} + \phi}{\pi_{ac}(\psi_{ac}^*)L - z(\psi_{ac}^* - \psi_{pc})}$
 - Let $\bar{\psi}_{ac}^*$ satisfy this for q_R^* given by pooling & s_h

Full Model Equilibria

- Assumption: If pooling at $b = 0, R$ challenges if and only if $s = s_h$
- Pooling equilibrium with no challenges
 - R indifferent to challenging: $q_R^* = \frac{z\psi_{pc} + \phi}{\pi_{ac}(\psi_{ac}^*)L - z(\psi_{ac}^* - \psi_{pc})}$
 - Let $\bar{\psi}_{ac}^*$ satisfy this for q_R^* given by pooling & s_h
 - If there is a b^* large enough that $\psi_{ac}^*(b^*, p) \geq \bar{\psi}_{ac}^*$, R won't challenge for any $b > b^*$

Full Model Equilibria

- Assumption: If pooling at $b = 0, R$ challenges if and only if $s = s_h$
- Pooling equilibrium with no challenges
 - R indifferent to challenging: $q_R^* = \frac{z\psi_{pc} + \phi}{\pi_{ac}(\psi_{ac}^*)L - z(\psi_{ac}^* - \psi_{pc})}$
 - Let $\bar{\psi}_{ac}^*$ satisfy this for q_R^* given by pooling & s_h
 - If there is a b^* large enough that $\psi_{ac}^*(b^*, p) \geq \bar{\psi}_{ac}^*$, R won't challenge for any $b > b^*$
 - Both types will offer a contract with $b > b^*$

Full Model Equilibria

- Pooling equilibrium with challenges

Full Model Equilibria

- Pooling equilibrium with challenges
 - There exists a \hat{b} s.t., acA is indifferent between

Full Model Equilibria

- Pooling equilibrium with challenges
 - There exists a \hat{b} s.t., acA is indifferent between
 - Pooling (challenged w/ probability h_{ac}) and

- Pooling equilibrium with challenges
 - There exists a \hat{b} s.t., acA is indifferent between
 - Pooling (challenged w/ probability h_{ac}) and
 - Offering $b = 0$ and challenged for sure

- Pooling equilibrium with challenges
 - There exists a \hat{b} s.t., acA is indifferent between
 - Pooling (challenged w/ probability h_{ac}) and
 - Offering $b = 0$ and challenged for sure
 - If $b \leq \hat{b}$: pooling eqm & R challenges iff $s = s_h$

- Pooling equilibrium with challenges
 - There exists a \hat{b} s.t., acA is indifferent between
 - Pooling (challenged w/ probability h_{ac}) and
 - Offering $b = 0$ and challenged for sure
 - If $b \leq \hat{b}$: pooling eqm & R challenges iff $s = s_h$
- Partial pooling equilibrium

Full Model Equilibria

- Pooling equilibrium with challenges
 - There exists a \hat{b} s.t., acA is indifferent between
 - Pooling (challenged w/ probability h_{ac}) and
 - Offering $b = 0$ and challenged for sure
 - If $b \leq \hat{b}$: pooling eqm & R challenges iff $s = s_h$
- Partial pooling equilibrium
 - If $b > \hat{b}$, only partial pooling possible

- Pooling equilibrium with challenges
 - There exists a \hat{b} s.t., acA is indifferent between
 - Pooling (challenged w/ probability h_{ac}) and
 - Offering $b = 0$ and challenged for sure
 - If $b \leq \hat{b}$: pooling eqm & R challenges iff $s = s_h$
- Partial pooling equilibrium
 - If $b > \hat{b}$, only partial pooling possible
 - pcA offers (b, p) and acA mixes between (b, p) and $(0, v)$

- Pooling equilibrium with challenges
 - There exists a \hat{b} s.t., acA is indifferent between
 - Pooling (challenged w/ probability h_{ac}) and
 - Offering $b = 0$ and challenged for sure
 - If $b \leq \hat{b}$: pooling eqm & R challenges iff $s = s_h$
- Partial pooling equilibrium
 - If $b > \hat{b}$, only partial pooling possible
 - pcA offers (b, p) and acA mixes between (b, p) and $(0, v)$
 - **R always challenges $(0, v)$, sometimes challenges (b, p) if s_h**

- Pooling equilibrium with challenges
 - There exists a \hat{b} s.t., acA is indifferent between
 - Pooling (challenged w/ probability h_{ac}) and
 - Offering $b = 0$ and challenged for sure
 - If $b \leq \hat{b}$: pooling eqm & R challenges iff $s = s_h$
- Partial pooling equilibrium
 - If $b > \hat{b}$, only partial pooling possible
 - pcA offers (b, p) and acA mixes between (b, p) and $(0, v)$
 - R always challenges $(0, v)$, sometimes challenges (b, p) if s_h
 - **Probability of challenge decreasing in b**

- Pooling equilibrium with challenges
 - There exists a \hat{b} s.t., acA is indifferent between
 - Pooling (challenged w/ probability h_{ac}) and
 - Offering $b = 0$ and challenged for sure
 - If $b \leq \hat{b}$: pooling eqm & R challenges iff $s = s_h$
- Partial pooling equilibrium
 - If $b > \hat{b}$, only partial pooling possible
 - pcA offers (b, p) and acA mixes between (b, p) and $(0, v)$
 - R always challenges $(0, v)$, sometimes challenges (b, p) if s_h
 - Probability of challenge decreasing in b
 - **Probability acA offers (b, p) drops at \hat{b} & then increases in b**

Welfare Comparison

- Pooling with no challenges worst

- Pooling with no challenges worst
- Pooling with challenges best at $b = 0$

- Pooling with no challenges worst
- Pooling with challenges best at $b = 0$
 - Larger b increases litigation costs & harder to block ac mergers

- Pooling with no challenges worst
- Pooling with challenges best at $b = 0$
 - Larger b increases litigation costs & harder to block ac mergers
- Partial pooling best at \hat{b}

- Pooling with no challenges worst
- Pooling with challenges best at $b = 0$
 - Larger b increases litigation costs & harder to block ac mergers
- Partial pooling best at \hat{b}
 - Probability of separation largest at \hat{b}

- Pooling with no challenges worst
- Pooling with challenges best at $b = 0$
 - Larger b increases litigation costs & harder to block ac mergers
- Partial pooling best at \hat{b}
 - Probability of separation largest at \hat{b}
 - *R welfare comes from when acA separates*

- Pooling with no challenges worst
- Pooling with challenges best at $b = 0$
 - Larger b increases litigation costs & harder to block ac mergers
- Partial pooling best at \hat{b}
 - Probability of separation largest at \hat{b}
 - R welfare comes from when acA separates
 - *pcA wants largest b because min challenge probability*

- Pooling with no challenges worst
- Pooling with challenges best at $b = 0$
 - Larger b increases litigation costs & harder to block ac mergers
- Partial pooling best at \hat{b}
 - Probability of separation largest at \hat{b}
 - R welfare comes from when acA separates
 - pcA wants largest b because min challenge probability
- Comparing $b = \hat{b}$ and $b = 0$

- Pooling with no challenges worst
- Pooling with challenges best at $b = 0$
 - Larger b increases litigation costs & harder to block ac mergers
- Partial pooling best at \hat{b}
 - Probability of separation largest at \hat{b}
 - R welfare comes from when acA separates
 - pcA wants largest b because min challenge probability
- Comparing $b = \hat{b}$ and $b = 0$
 - Either could be better

- Pooling with no challenges worst
- Pooling with challenges best at $b = 0$
 - Larger b increases litigation costs & harder to block ac mergers
- Partial pooling best at \hat{b}
 - Probability of separation largest at \hat{b}
 - R welfare comes from when acA separates
 - pcA wants largest b because min challenge probability
- Comparing $b = \hat{b}$ and $b = 0$
 - Either could be better
 - Pooling better w/ smaller L and h_{ac} close to one

- Pooling with no challenges worst
- Pooling with challenges best at $b = 0$
 - Larger b increases litigation costs & harder to block ac mergers
- Partial pooling best at \hat{b}
 - Probability of separation largest at \hat{b}
 - R welfare comes from when acA separates
 - pcA wants largest b because min challenge probability
- Comparing $b = \hat{b}$ and $b = 0$
 - Either could be better
 - Pooling better w/ smaller L and h_{ac} close to one
 - **Partial pooling better w/ larger L and h_{pc} close to zero**

Conclusion

- Model justifies some regulation of breakup fees

Conclusion

- Model justifies some regulation of breakup fees
 - Supra-compensatory breakup fees could be optimal (to help signal type), but may not be

Conclusion

- Model justifies some regulation of breakup fees
 - Supra-compensatory breakup fees could be optimal (to help signal type), but may not be
 - Parties have incentive to choose larger breakup fees than are socially optimal

- Model justifies some regulation of breakup fees
 - Supra-compensatory breakup fees could be optimal (to help signal type), but may not be
 - Parties have incentive to choose larger breakup fees than are socially optimal
- Robustness

Conclusion

- Model justifies some regulation of breakup fees
 - Supra-compensatory breakup fees could be optimal (to help signal type), but may not be
 - Parties have incentive to choose larger breakup fees than are socially optimal
- Robustness
 - Relax *pcA* always wins at trial

Conclusion

- Model justifies some regulation of breakup fees
 - Supra-compensatory breakup fees could be optimal (to help signal type), but may not be
 - Parties have incentive to choose larger breakup fees than are socially optimal
- Robustness
 - Relax pcA always wins at trial
 - Challenging less desirable

Conclusion

- Model justifies some regulation of breakup fees
 - Supra-compensatory breakup fees could be optimal (to help signal type), but may not be
 - Parties have incentive to choose larger breakup fees than are socially optimal
- Robustness
 - Relax pcA always wins at trial
 - Challenging less desirable
 - Easier to have breakup fee that deters challenges

Conclusion

- Model justifies some regulation of breakup fees
 - Supra-compensatory breakup fees could be optimal (to help signal type), but may not be
 - Parties have incentive to choose larger breakup fees than are socially optimal
- Robustness
 - Relax pcA always wins at trial
 - Challenging less desirable
 - Easier to have breakup fee that deters challenges
 - Other comparisons unaffected

Conclusion

- Model justifies some regulation of breakup fees
 - Supra-compensatory breakup fees could be optimal (to help signal type), but may not be
 - Parties have incentive to choose larger breakup fees than are socially optimal
- Robustness
 - Relax pcA always wins at trial
 - Challenging less desirable
 - Easier to have breakup fee that deters challenges
 - Other comparisons unaffected
- Renegotiation

Conclusion

- Model justifies some regulation of breakup fees
 - Supra-compensatory breakup fees could be optimal (to help signal type), but may not be
 - Parties have incentive to choose larger breakup fees than are socially optimal
- Robustness
 - Relax pcA always wins at trial
 - Challenging less desirable
 - Easier to have breakup fee that deters challenges
 - Other comparisons unaffected
- Renegotiation
 - If R challenges, high b not jointly optimal, but...

Conclusion

- Model justifies some regulation of breakup fees
 - Supra-compensatory breakup fees could be optimal (to help signal type), but may not be
 - Parties have incentive to choose larger breakup fees than are socially optimal
- Robustness
 - Relax pcA always wins at trial
 - Challenging less desirable
 - Easier to have breakup fee that deters challenges
 - Other comparisons unaffected
- Renegotiation
 - If R challenges, high b not jointly optimal, but...
 - **Renegotiation never happens**

Conclusion

- Model justifies some regulation of breakup fees
 - Supra-compensatory breakup fees could be optimal (to help signal type), but may not be
 - Parties have incentive to choose larger breakup fees than are socially optimal
- Robustness
 - Relax pcA always wins at trial
 - Challenging less desirable
 - Easier to have breakup fee that deters challenges
 - Other comparisons unaffected
- Renegotiation
 - If R challenges, high b not jointly optimal, but...
 - Renegotiation never happens
 - **Asymmetric information may impede it**

- Model justifies some regulation of breakup fees
 - Supra-compensatory breakup fees could be optimal (to help signal type), but may not be
 - Parties have incentive to choose larger breakup fees than are socially optimal
- Robustness
 - Relax pcA always wins at trial
 - Challenging less desirable
 - Easier to have breakup fee that deters challenges
 - Other comparisons unaffected
- Renegotiation
 - If R challenges, high b not jointly optimal, but...
 - Renegotiation never happens
 - Asymmetric information may impede it
 - **R challenge decision never really final until all costs spent**